Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present initial findings from the ongoing Community Stress Drop Validation Study to compare spectral stress-drop estimates for earthquakes in the 2019 Ridgecrest, California, sequence. This study uses a unified dataset to independently estimate earthquake source parameters through various methods. Stress drop, which denotes the change in average shear stress along a fault during earthquake rupture, is a critical parameter in earthquake science, impacting ground motion, rupture simulation, and source physics. Spectral stress drop is commonly derived by fitting the amplitude-spectrum shape, but estimates can vary substantially across studies for individual earthquakes. Sponsored jointly by the U.S. Geological Survey and the Statewide (previously, Southern) California Earthquake Center our community study aims to elucidate sources of variability and uncertainty in earthquake spectral stress-drop estimates through quantitative comparison of submitted results from independent analyses. The dataset includes nearly 13,000 earthquakes ranging from M 1 to 7 during a two-week period of the 2019 Ridgecrest sequence, recorded within a 1° radius. In this article, we report on 56 unique submissions received from 20 different groups, detailing spectral corner frequencies (or source durations), moment magnitudes, and estimated spectral stress drops. Methods employed encompass spectral ratio analysis, spectral decomposition and inversion, finite-fault modeling, ground-motion-based approaches, and combined methods. Initial analysis reveals significant scatter across submitted spectral stress drops spanning over six orders of magnitude. However, we can identify between-method trends and offsets within the data to mitigate this variability. Averaging submissions for a prioritized subset of 56 events shows reduced variability of spectral stress drop, indicating overall consistency in recovered spectral stress-drop values.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Abstract The loss of life and economic consequences caused by several recent earthquakes demonstrate the importance of developing seismically safe building codes. The quantification of seismic hazard, which describes the likelihood of earthquake‐induced ground shaking at a site for a specific time period, is a key component of a building code, as it helps ensure that structures are designed to withstand the ground shaking caused by a potential earthquake. Geologic or geomorphic data represent important inputs to the most common seismic hazard model (probabilistic seismic hazard analyses, or PSHAs), as they can characterize the magnitudes, locations, and types of earthquakes that occur over long intervals (thousands of years). However, several recent earthquakes and a growing body of work challenge many of our previous assumptions about the characteristics of active faults and their rupture behavior, and these complexities can be challenging to accurately represent in PSHA. Here, we discuss several of the outstanding challenges surrounding geologic and geomorphic data sets frequently used in PSHA. The topics we discuss include how to utilize paleoseismic records in fault slip rate estimates, understanding and modeling earthquake recurrence and fault complexity, the development and use of fault‐scaling relationships, and characterizing enigmatic faults using topography. Making headway in these areas will likely require advancements in our understanding of the fundamental science behind processes such as fault triggering, complex rupture, earthquake clustering, and fault scaling. Progress in these topics will be important if we wish to accurately capture earthquake behavior in a variety of settings using PSHA in the future.more » « less
An official website of the United States government
